

Major/Minor Specialization Scheme-AY-2020-2021(R-2020)

Data Science

	Course Desc	ription	Teaching Scheme (Program Specific)						
Semester	Course Code	Course Title		Modes of Te	eaching / Lea	rning / Weightag	ge		
				Hours Per V	Week (Approx))			
			Theory	Tutorial	Practical	Total Contact Hours	Credits		
3	SP-CS-DS-301	Introduction to Statistics	3-5	-	-	40	3		
4	SP-CS-DS-401	Introduction to Data Analytics	3-5	-	-	40	3		
5	SP-CS-DS-501	Introduction to Machine Learning	3-5	-	-	40	3		
6	SP-CS-DS-601	Deep Learning	3-5	-	-	40	3		
7	SP-CS-DS-701	Tools for Data Analytics	3-5	-	-	40	3		
8	SP-CS-DS-801	Reinforcement Learning	3-5	-	-	40	3		
		Total (per semester)	40	0	0	240	18		

1) ESE- End Semester Examination

2) Assignments can be either NPTEL Assignments/Assignments assigned to Students by Faculty Mentor

3) Students need to go through the syllabus in sequential fashion.

4) Students can do two parallel courses in a semester if he has backlog.

Dr. Rashmi Thakur Specialization Incharge

Dr. Harshali Patil HOD-COMP

Syllabus for Data Science Specialization – R-2020 A.Y. (20-21) S.E. Semester –III

		B.E. (Con	puter Eng	ineering)			S.E. SE	M: III		
Course N	Course Name: Introduction to Statistics							Course Code:SP-CS-DS-301		
Т	eaching Sch	neme (Progr	am Specifi	ic)	Examinati	ion Sch	eme (Formative/	Summat	tive)	
Mod	es of Teach	ing / Learn	ing / Weigl	ntage	Modes of	Contin	uous Assessment	/ Evalua	tion	
Hours Per Week				Theory (100)		Practical/Oral (25)	Term Work (25)	Total		
Theory	Tutorial	Practical	Contact Hours	Credits	Assignment	ESE	PR/OR	TW		
3	-	-	3	3	25	75	-	-	100	
	ESE: End Semester Examination - Paper Duration - 3Hours									
Prereau	isite:									

Course Objective:

This is an introductory course in statistics designed to provide students with the basic concepts of data analysis and statistical computing. The main objective is to provide students with pragmatic tools for assessing statistical claims and conducting their own statistical analyses.

Detailed Syllabus:

Total Hours:- 40 (12 Weeks)

Module No.	Topics	NPTEL/MOOCLink
1	Introduction to Statistics and Data Types of Statistics, types of Data and sources of Data, Population vs Sample, Scales of Measurement, Data representation techniques- Part 1 , Data representation techniques- Part 2 and measures of central tendency- Part 1, Measures of Central Tendency- Part 2, Examples of introduction to data and data representation techniques, Measures of Variation, Applications of Measures of Central Tendency and Measures of Variation, Chapter concepts- Measures of central tendency and measures of variation, Outliers, and shape of a distribution	https://nptel.ac.in/courses/ 110/107/110107114/
2	Numerical Descriptive MeasuresCovariance and Coefficient of Correlation, Introduction to Probability, Probability- Part 1, Probability- Part 2, Probability Distributions- Part 1, Probability Distributions- Part 2, Probability Distributions- Part 3, Examples for Standardized Normal Distribution, Evaluating Normality, Exponential Probability Distribution	https://nptel.ac.in/courses/ 110/107/110107114/
3	Concepts – Probability Distributions	

	Sampling and Sampling Techniques, Sampling Distribution-I Sampling Distribution-II, Sampling Distribution-III, Method of Estimation, Interval Estimation, Confidence Interval-I, Confidence Interval-II, Types of Hypothesis Testing	https://nptel.ac.in/courses/ 110/107/110107114/
4	Hypothesis Testing	
	Hypothesis Testing Process-I, Hypothesis Testing Process-II, Hypothesis Testing Examples, Hypothesis Testing of Proportions-I, Hypothesis Testing of Proportions-II, Hypothesis Testing-One sample Test, Hypothesis Testing using Minitab, Hypothesis Testing of Proportions using Minitab, Hypothesis Testing Two Sample Test- I, Hypothesis Testing Two Sample Test-II	https://nptel.ac.in/courses/ 110/107/110107114/
5	Hypothesis Testing&Analysis of variance	https://nptel.ac.in/courses/
	Hypothesis Testing: Two sample test-III, Paired Sample Test, Hypothesis Testing of Proportion, Example of Hypothesis Testing, Analysis of variance-I, Analysis of variance-II, Analysis of variance- III, Tukey Kramer test, Randomized Blocked Design	110/107/110107114/
6	A Factorial Design&Simple linear regression	https://nptel.ac.in/courses/
	A Factorial Design-I, A Factorial Design-II, Chi-square test goodness of fit-I, Chi-square test goodness of fit-II, Chi-square test of independence, Simple linear regression $\hat{a} \in I$, Simple linear regression $\hat{a} \in I$, Assumption of Regression, Multiple Regression Example of multiple Regression	110/107/110107114/

Detailed Syllabus: Total Hours:- 40 (12 Weeks)

One Module = Approx. 2 weeks

Dr. Manish Rana

Dr. Rashmi Thakur

Dr. Harshalipatil

Faculty Mentor

Specialization In-charge

HOD

Syllabus for Data Science Specialization – R-2020 A.Y. (20-21)

S.E. Semester –IV

	B.E. (Computer Engineering)						S.E. SE	M: IV	
Course N	Name: Intro	duction to D	ata Analyti	cs			Course Code:	SP-CS-D	S-401
T	eaching Sch	neme (Progi	am Specifi	ic)	Examinati	ion Sch	eme (Formative/	Summat	ive)
Mod	es of Teach	ing / Learn	ing / Weigl	ntage	Modes of	Contin	uous Assessment	/ Evalua	tion
Hours Per Week				Theory (100)		Practical/Oral (25)	Term Work (25)	Total	
Theory	Tutorial	Practical	Contact Hours	Credits	Assignment	ESE	PR/OR	TW	
3 3 3 25 75						75	-	-	100
	ESE: End Semester Examination - Paper Duration - 3 Hours								
Prerequi	isite: Pvtho	n programi	ning						

<u>Course Objective:</u> the course intends to learn how one can use analytics in their career and life and creating analytics models.

Detailed Syllabus:

Module No.	Topics	NPTEL/MOOCLink
1	Introduction to Data Analytics and Probability Introduction to data analytics and Python fundamentals, Introduction to probability	https://onlinecourses.npte l.ac.in/noc21_cs45/previe w
2	Sampling Theory Sampling and sampling distributions and Hypothesis testing	https://onlinecourses.npte l.ac.in/noc21_cs45/previe w
3	Introduction to ANOVA Two sample testing and introduction to ANOVA, Two way ANOVA and linear regression	https://onlinecourses.npte l.ac.in/noc21_cs45/previe w
4	Regression Linear regression and multiple regression, Concepts of MLE and Logistic regression	https://onlinecourses.npte l.ac.in/noc21_cs45/previe w
5	Regression Analysis ROC and Regression Analysis Model Building, C ² Test and introduction to cluster analysis	https://onlinecourses.npte l.ac.in/noc21_cs45/previe w
6	Clustering Clustering analysis, Classification and Regression Trees (CART)	https://onlinecourses.npte l.ac.in/noc21_cs45/previe w

Total Hours: - 40 (12 Weeks)

One Module = Approx. 2 weeks

Mr. Shailesh Sangle

Faculty Mentor

Dr. Rashmi Thakur

Dr. Harshali Patil

Specialization In-charge

HOD-COMP

Syllabus for Data Science Specialization – R-2020 A.Y. (2020-2021) T.E. Semester –V

	B.E. (Computer Engineering)							EM: V		
Course Name: Introduction to Machine Learning					Course Code:SP-CS-DS-501				S-501	
Teaching Scheme (Program Specific)				Examinati	ion Sch	eme (Formative/	Summat	zive)		
Mod	es of Teach	ing / Learn	ing / Weigl	ntage	Modes of	Contin	uous Assessment	/ Evalua	tion	
Hours Per Week				Theory (100)		Practical/Oral (25)	Term Work (25)	Total		
Theory	Tutorial	Practical	Contact Hours	Credits	Assignment	ESE	PR/OR	TW		
3	-	-	3	3	25 75 - 10					
	ESE: End Semester Examination - Paper Duration - 3 Hours									
Prerequ	isite: Linear	Algebra an	d Calculus,	Probabilit	y Basics					

<u>Course Objective</u>: The Objective of this course is to introduce some of the basic concepts of machine learning from a mathematically point of view. Also introduce various machine learning algorithms to solve real world problems in the domain of Data Science, Data Mining, Information Retrieval, Computer visionand Linguistics.

Detailed Syllabus:

Total Hours:- 40 (12 Weeks)

Module	Topics	NPTEL Link
No.		
1	Introduction to Machine Learning	https://onlinecour
	Basics of Machine Learning, Types of Machine Learning	ses.nptel.ac.in/noc
	Introduction: Statistical Decision Theory - Regression, Statistical	$21 \text{ cs}^{24/\text{preview}}$
	Decision Theory -Classification, Bias Variance	
2	Regression	
	Linear Regression, Multivariate Regression, Subset Selection,	
	Shrinkage Methods, Principal Component Regression, Partial Least	
	squares	
3	Neural Network	
	Introduction, Early Models, Perceptron Learning, Neural Networks -	
	Backpropagation, Neural Networks - Initialization, Training &	
	Validation, Parameter Estimation	
4	Classification	
	Linear Classification, Logistic Regression, SVM, Decision Trees,	
	Regression Tree, Decision Trees - Stopping Criterion & Pruning, Loss	
	functions, Decision Trees - Categorical Attributes, Multiway Splits,	
	Missing Values, Decision Trees - Instability, Example, Evaluation	
	Measures-1	
5	Trends in Machine Learning	
	Bootstrapping & Cross Validation, Class Evaluation Measures, ROC	
	curve, MDL, Ensemble Methods - Bagging, Committee Machines and	
	Stacking, Ensemble Methods – Boosting	

One Module = Approx. 2 weeks

Ms. VaishaliNirgude

Dr. Rashmi Thakur

Dr. HarshaliPatil

Faculty Mentor

Specialization In-charge

HOD COMP

Syllabus for Data Science Specialization – R-2020 A.Y. (20-21)

S.E. Semester –VI

		S.E. SEM: VI							
Course N	Course Name: Deep Learning						Course Code:	SP-CS-D	S-601
Te	aching Sch	ieme (Progi	am Specifi	ic)	Examinati	ion Sch	eme (Formative/	Summat	ive)
Mode	es of Teach	ing / Learn	ing / Weigl	ntage	Modes of	Contin	uous Assessment	/ Evalua	tion
Hours Per Week				Theory (100)		Practical/Oral (25)	Term Work (25)	Total	
Theory	Tutorial	Practical	Contact Hours	Credits	Assignment	ESE	PR/OR	TW	
3	-	-	3	3	25	75	-	-	100
ESE: End Semester Examination - Paper Duration - 3 Hours									

Course Objective:

Module No.	Topics	NPTEL/MOOCLink
1	Introduction to Deep LearningHistory of Deep Learning, Deep Learning Success Stories,McCullochPittsNeuron,ThresholdingLogic,Perceptrons,PerceptronLearningAlgorithmMultilayerPerceptrons (MLPs),RepresentationPower of MLPs,SigmoidNeurons, GradientDescent, FeedforwardNeuralNetworks,RepresentationPower ofFeedforwardNeuralNetworks	https://onlinecourses.npte l.ac.in/noc21_cs35/previe w
2	Feed Forward Neural NetworksFeedForwardNeuralNetworks,BackpropagationGradientDescent(GD),MomentumBasedGD,NesterovAcceleratedGD,StochasticGD,AdaGrad,RMSProp,Adam,	https://onlinecourses.npte l.ac.in/noc21_cs35/previe w
3	Autoencoder & PCAEigenvalues and eigenvectors, Eigenvalue Decomposition, BasisPrincipal Component Analysis and its interpretations, Singular ValueDecompositionAutoencoders and relation to PCA, Regularization in autoencoders,Denoising autoencoders, Sparse autoencoders,Contractiveautoencoders	https://onlinecourses.npte l.ac.in/noc21_cs35/previe w
4	Regularization & NormalizationBias Variance Tradeoff, L2 regularization, Early stopping, Datasetaugmentation, Parameter sharin and tying, Injecting noise at input,Ensemblemethods,DropoutGreedy Layerwise Pre-training, Better activation functions, Better	https://onlinecourses.npte l.ac.in/noc21_cs35/previe w

	weight initialization methods, Bat	ch Normalization	
5	Convolutional Neural Netw	orks	https://onlinecourses.npte
	Learning Vectorial Representations	Of Words	l.ac.in/noc21_cs35/previe
	Convolutional Neural Networks, LeNet, AlexN	let, ZF-Net, VGGNet,	W
	GoogLeNet, ResNet, Visualizing	Convolutional	
	Neural Networks, Guided Backpropagation, D	eep Dream, Deep Art,	
	Fooling Convolutional Neur	al Networks	
6	Recurrent Neural Networ	ks	
	Recurrent Neural Networks, Backpropagation	through time (BPTT),	https://onlinecourses.npte
	Vanishing and Exploding Gradients, Truncated	BPTT, GRU,LSTMs	1.ac.in/noc21_cs35/previe
	Encoder Decoder Models, Attention Mecha	nism, Attention over	w
	images		

Detailed Syllabus: Total Hours:- 40 (12 Weeks)

One Module = Approx. 2 weeks

Mr.Nitin Harane

Faculty Mentor

Dr.Rashmi Thakur

Dr.Harshali Patil

Specialization In-charge

HOD

Syllabus for Data Science Specialization – R-2020 A.Y. (2020-2021) B.E. Semester –VII

	B.E. (Computer Engineering)							M: VII	
Course N	Name: Tool	s for Data A	nalytics				Course Code:	SP-CS-D	S-701
Т	eaching Sch	neme (Progr	am Specifi	ic)	Examinati	ion Sch	eme (Formative/	Summat	zive)
Mod	es of Teach	ing / Learn	ing / Weigl	ntage	Modes of	Contin	uous Assessment	/ Evalua	tion
Hours Per Week				Theory (100)		Practical/Oral (25)	Term Work (25)	Total	
Theory	Tutorial	Practical	Contact Hours	Credits	Assignment	ESE	PR/OR	TW	
3 3 3 25 75					75	-	-	100	
	ESE: End Semester Examination - Paper Duration - 3 Hours								
Prerequi	site: Pytho	n programi	ning						

<u>Course Objective:</u> The course intends to learn how one can use different analytics tools to collect, measure, analysis and reporting of data about learners and their interactions with a learning environment.

Detailed Syllabus:

Module	Topics	NPTEL/MOOC Link		
1	Tools for preprocessing			
	Introduction to data analytics. Tools for Data Preprocessing	https://nptel.ac.in/courses/ 127/101/106101224/		
2	Tools for Machine Learning and Descriptive Analytics			
	Introduction to Machine Learning and Descriptive	https://nptel.ac.in/courses/		
	Analytics. Tools for Machine Learning and Descriptive	127/101/106101224/		
	Analytics.			
3	Tools for Diagnostic Analytics and Data Mining			
	Introduction to Diagnostic Analytics and Data Mining Tools for	https://nptel.ac.in/courses/		
	Diagnostic Analytics and Data Mining.	127/101/106101224/		
4	Tools for Predictive Analytics			
	Introduction to Predictive Analytics and tools for Predictive	https://nptel.ac.in/courses/		
	Analytics.	127/101/106101224/		
5	Tools for Text Analytics			
	Introduction to Text Analytics and tools for Text Analytics.	https://nptel.ac.in/courses/ 127/101/106101224/		
6	Tools for Multimodal Learning Analytics			
	Introduction to Multimodal Learning Analytics and tools for	https://nptel.ac.in/courses/		
	multimodal Learning Analytics.	127/101/106101224/		

Total Hours: - 40 (12 Weeks)

One Module = Approx. 2 weeks

Mrs. Ashwini PatilDr. Rashmi ThakurDr. Harshali PatilFaculty MentorSpecialization In-chargeHOD-COMP

Syllabus for Data Science Specialization – R-2020 A.Y. (2020-21)

S.E. Semester – VIII

B.E. (Computer Engineering)						B.E. SEM: VIII			
Course Name: Reinforcement Learning						Course Code:SP-CS-DS-801			
Teaching Scheme (Program Specific)				Examination Scheme (Formative/ Summative)					
Modes of Teaching / Learning / Weightage				Modes of Continuous Assessment / Evaluation					
Hours Per Week				Theory (100)		Practical/Oral (25)	Term Work (25)	Total	
Theory	Tutorial	Practical	Contact Hours	Credits	Assignment	ESE	PR/OR	TW	
3	-	-	3	3	25	75	-	-	100
ESE: End Semester Examination - Paper Duration - 3 Hours									
Prereauisite:									

<u>Course Objective:</u>The course intends to develop an intuitive understanding of the foundational ideas of reinforcement learning by exploring various processes and mathematical approaches. The students will also learn different reinforcement techniques to be applied in real world problems.

Detailed Syllabus:

Total Hours:- 40 (12 Weeks)

Module	Topics	NPTEL/MOOCLink
No.		
1	Introduction to Reinforcement Learning	
	Introduction, Bandit algorithms – UCB, PAC	https://onlinecourses.nptel. ac.in/noc21_cs25/preview
2	Bandit Algorithms and MDP	
	Bandit algorithms – Median Elimination, Policy Gradient, Full RL &	https://onlinecourses.nptel.
	MDPs	ac.in/noc21_cs25/preview
3	Dynamic Programming and Temporal Difference Learning	https://onlinecourses.nptel.
	Bellman Optimality, Dynamic Programming & TD Methods	ac.in/noc21_cs25/preview
4	Function Approximation Methods	https://onlinecourses.nptel.
	Eligibility Traces, Function Approximation	ac.in/noc21_cs25/preview
5	Deep Reinforcement Learning	https://onlinecourses.nptel.
	Least Squares Methods, Fitted Q, DQN & Policy Gradient for Full RL	ac.in/noc21_cs25/preview
6	Hierarchical Reinforcement Learning and MDP	https://onlinecourses.nptel.
	Hierarchical RL, POMDPs	ac.in/noc21_cs25/preview

*One Module =Approx. 2 weeks

Dr. Prachi Janrao

Dr. Rashmi Thakur

Dr. HarshaliPatil

Faculty Mentor

Specialization In-charge

HOD