

Under TCET Autonomy Scheme - 2019

Major/Minor Specialization Scheme-AY-2020-2021(R-2020) Artificial Intelligence

	Course Desc	ription	Teaching Scheme (Program Specific)					
Semester	Course Code	Course Title				rning / Weightag	ge	
				Hours Per V	Week (Approx			
			Theory	Tutorial	Practical	Total Contact Hours	Credits	
3	SP-CS-AI-301	Essential Mathematics for Machine Learning	3-5	-	-	40	3	
4	SP-CS-AI-401	Introduction to Artificial Intelligence	3-5	-	-	40	3	
5	SP-CS-AI-501	Introduction to Machine Learning	3-5	-	-	40	3	
6	SP-CS-AI-601	Introduction to Soft Computing	3-5	-	-	40	3	
7	SP-CS-AI-701	Applied Natural Language Processing	3-5	-	-	40	3	
8	SP-CS-AI-801	Deep Learning	3-5	-	-	40	3	
		Total (per semester)	40	0	0	240	18	

1) ESE- End Semester Examination

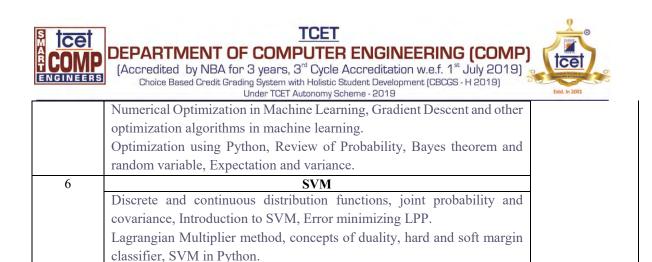
2) Assignments can be either NPTEL Assignments/Assignments assigned to Students by Faculty Mentor

3) Students need to go through the syllabus in sequential fashion.

4) Students can do two parallel courses in a semester if he has backlog.

Dr. Megharani Patil Specialization Incharge

Dr. Harshali Patil HOD


Syllabus for Artificial Intelligence Specialization – R-2020 A.Y. (2021-2022) S.E. Semester –III

B.E. (Computer Engineering)						S.E. SEM: III				
Cour	se Name: H	Essential Mat	thematics for	or Machine	e Learni	ng	Course Co	ode:SP-CS-AI-30	1	
Т	eaching Sch	neme (Progr	am Specifi	ic)	Exa	aminati	on Scheme (Form	ative/ Summa	tive)	
Mod	es of Teach	ing / Learn	ing / Weigl	ntage	Mo	des of	Continuous Assess	sment / Evalua	tion	
	Но	ours Per We	ek		The	eory 00)	Practical/Oral (25)	Term Work (25)	Total	
Theory	Tutorial	Practical	Contact Hours	Credits	IA	ESE	PR/OR	TW		
3	-	-	3	3	25 75		-	-	100	
ESE: End Semester Examination - Paper Duration - 3 Hours										
Prerequi	Prerequisite: Basic Mathematics									

<u>Course Objective</u>: The Objective of this course is to introduce mathematical concepts required to apply in Machine Learning and Data science, an area that is in demand today.

Detailed Syllabus:

Module	Topics	NPTEL Link
No.		
1	Calculus for Machine Learning	https://nptel.ac.in
	Vectors in Machine Learning, Basics of Matrix Algebra, Vector Space,	/courses/111/107
	Subspace, Basis and Dimension.	/111107137/
	Linear Transformations, Norms and Spaces, Orthogonal Complement and	
	Projection Mapping, Eigenvalues and Eigenvectors, Special Matrices and	
	Properties.	
2	Dimensionality Reduction	
	Spectral Decomposition, Singular Value Decomposition, Low Rank	
	Approximations, Python Implementation of SVD and Low-rank	
	Approximation.	
	Principal Component Analysis, Python Implementation of PCA, Linear	
	Discriminant Analysis, Python Implementation of LDA.	
3	Linear Algebra for Machine Learning	
	Least Square Approximation and Minimum Normed Solution, Linear and	
	Multiple Regression, Logistic Regression.	
	Classification Metrics, Gram Schmidt Process, Polar Decomposition,	
	Minimal Polynomial and Jordan Canonical Form, Some more Matrices	
	Applications in Machine Leaning.	
4	Calculus	
	Basics concepts of Calculus, gradient, Jacobian, Chain rule, Change of	
	variables.	
	Calculus in Python, Convex sets and convex functions, properties of	
	convex functions, Introduction to Optimization.	
5	Optimization	

Total Hours

Mrs. Shiwani Gupta	Dr. MegharaniPatil	Dr. HarshaliPatil
Assist. Prof COMP	AI Specialization Incharge	HOD-COMP

Syllabus for Artificial Intelligence Specialization – R-2020 A.Y. (2020-2021) S.E. Semester –IV

		S.E. SEM: IV							
Course N	Name: Intro	duction to A	rtificial Int	elligence			Course Code	e: SP-CS-Al	-401
Т	eaching Sch	neme (Prog	ram Specif	ic)	Examinat	tion Scl	heme (Formative/	Summati	ive)
Mod	es of Teach	ing / Learn	ing / Weigl	htage	Modes of	Contir	uous Assessment	/ Evaluat	tion
	Но	ours Per We	eek		Theory (100)		Practical/Oral (25)	Term Work (25)	Total
Theory	Tutorial	Practical	Contact Hours	Credits	Assignment	ESE	PR/OR	ŤŴ	
3	-	-	3	3	25	75	-	-	100
		ESE: En		· Examina	tion - Paper D	ouration	n - 3 Hours		

Prerequisite: Data Structures, Probability

<u>Course Objective</u>: The Objective of this course is to understand the variety of concepts in the field of artificial intelligence. It discusses the philosophy of AI, and how to model a new problem as an AI problem. It describes a variety of models such as search, logic, Bayes nets, and MDPs, which can be used to model a new problem. It also teaches many first algorithms to solve each formulation. The course prepares a student to take a variety of focused, advanced courses in various subfields of AI.

Detailed Syllabus:

Module	Topics	NPTEL Link
No.		
1	Philosophy of AI	
	Introduction: What to Expect from AI, History of AI from 40s - 90s, History of	
	AI in the 90s, History of AI in NASA & DARPA(2000s), Introduction: The	
	Present State of AI, Definition of AI Dictionary Meaning, Definition of AI	
	Thinking VS Acting and Humanly VS Rationally, Definition of AI Rational	
	Agent View of AI,	
	Examples Tasks, Phases of AI	
2	Modeling a Problem as Search Problem and Game Theory	
	Uniform Search: Notion of a State, Search Problem and Examples, Basic	
	Search Strategies, Uniformed Search: Iterative Deepening DFS, Uniformed	
	Search: Bidirectional Search	

	TCET DEPARTMENT OF COMPUTER ENGINEERING (COMP) (Accredited by NBA for 3 years, 3 rd Cycle Accreditation w.e.f. 1 st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019) Under TCET Autonomy Scheme - 2019	Etd. In 2001
	 Informed Search: Best First Search, Greedy Best First Search and A* Search, Analysis of A* Algorithm, Informed Search Proof of optimality of A*, Informed Search: Iterative Deepening A* and Depth First Branch & Bound, Informed Search: Admissible Heuristics and Domain Relaxation, Informed Search: Pattern Database Heuristics Local Search: Satisfaction VsOptimization, The Example of N-Queens, Hill Climbing, Drawbacks of Hill Climbing, Random Walk & Random Restart, Simulated Anealing, Local Beam Search and Genetic Algorithms Adversarial Search : Minimax Algorithm for two player games, An Example of Minimax Search, Alpha Beta Pruning, Analysis of Alpha Beta Pruning, Cutting Off Search, Horizon Effect, Game Databases & Other Ideas, Summary and Other Games Constraint Satisfaction Problems: Representation of the atomic state, Map coloring and other examples of CSP, Backtracking Search, Variable and Value Ordering in Backtracking Search, Inference for detecting failures early, Exploiting problem structure 	https://nptel.ac.in /courses/106/102 /106102220/
3	Propositional Logic &Satisfiability	/100102220/
	Logic in AI : Different Knowledge Representation systems, Syntax, Semantics, Forward Chaining, Resolution, Reduction to Satisfiability Problems, SAT Solvers : DPLL Algorithm, WalkSAT Algorithm	
4	Uncertainty in AI	
	Basics of Probability, Conditional Independence & Bayes Rule SyntaxBayesian Networks:Factorization, Conditional Independences and d-Separation, Inference using Variable Elimination, Bayesian Networks:Reducing	
	3-SAT to Bayes Net, Rejection Sampling, Likelihood Weighting MCMC with Gibbs Sampling, Maximum Likelihood Learning, Maximum a-Posteriori Learning, Bayesian Networks: Bayesian Learning, Structure Learning and Expectation	
	Maximization, Agents and Environments Decision Theory:Steps in Decision Theory, Non Deterministic Uncertainty, Probabilistic Uncertainty & Value of perfect information, Expected Utility vs Expected Value	
	Markov Decision Processes: Definition, Markov Decision Processes: An example of a Policy, Policy Evaluation using system of linear equations, Iterative Policy Evaluation, Value Iteration Policy Iteration and Applications & Extensions of MDPs	
5	Reinforcement LearningReinforcement Learning: Background, Model-based Learning for policyevaluation (Passive Learning), Model-free Learning for policy evaluation(Passive Learning), TD Learning, TD Learning and ComputationalNeuroscience, Q Learning, Exploration vs Exploitation Tradeoff, Generalizationin RL	
6	Introduction to Deep Learning & Deep RL Deep Learning : Perceptrons and Activation functions, Example of Handwritten digit recognition, Neural Layer as matrix operations, Differentiable loss function, Backpropagation through a computational graph, Thin Deep Vs Fat Shallow Networks Convolutional Neural Networks, Deep Reinforcement Learning Ethics of AI : Humans vs Robots, Robustness and Transparency of AI systems, Data Bias and Fairness of AI systems, Accountability, privacy and Human-AI interaction	

Dr. MegharaniPatil

Dr. MegharaniPatil

Dr. HarshaliPatil

Faculty Mentor

Specialization In-charge

HOD

Syllabus for Artificial Intelligence Specialization – R-2020 A.Y. (2020-2021) S.E. Semester –V

B.E. (Computer Engineering)							S.E. SEM: V		
	Course	Name: Intr	oduction to	Machine I	Learning		Course Code:SP-CS-AI-501		
T	eaching Sch	neme (Progi	am Specifi	ic)	Examinati	ion Sch	eme (Formative/	Summat	ive)
Mod	es of Teach	ing / Learn	ing / Weigl	ntage	Modes of	Contin	uous Assessment	/ Evalua	tion
				Theory (100)		Practical/Oral (25)	Term Work (25)	Total	
Theory	Tutorial	Practical	Contact Hours	Credits	Assignment	ESE	PR/OR	ŤŴ	
3	-	-	3	3	25	75	-	-	100
	ESE: End Semester Examination - Paper Duration - 3 Hours								
Prerequi	site: Linear	Algebra an	d Calculus,	Probabilit	y Basics				

<u>Course Objective</u>: The Objective of this course is to introduce some of the basic concepts of machine learning from a mathematically point of view. Also introduce various machine learning algorithms to solve real world problems in the domain of Data Science, Data Mining, Information Retrieval, Computer visionand Linguistics.

Detailed Syllabus:

Module No.	Topics	NPTEL Link
1	Introduction to Machine Learning Basics of Machine Learning, Types of Machine Learning Introduction: Statistical Decision Theory - Regression, Statistical Decision Theory -Classification, Bias Variance	https://swayam.go v.in/nd1_noc20_c s73/preview
2	Regression Linear Regression, Multivariate Regression, Subset Selection, Shrinkage Methods, Principal Component Regression, Partial Least squares	
3	Neural Network Introduction, Early Models, Perceptron Learning, Neural Networks - Backpropagation, Neural Networks - Initialization, Training & Validation, Parameter Estimation	

4	Classification	
	Linear Classification, Logistic Regression, SVM, Decision Trees,	
	Regression Tree, Decision Trees - Stopping Criterion & Pruning, Loss	
	functions, Decision Trees - Categorical Attributes, Multiway Splits,	
	Missing Values, Decision Trees - Instability, Example, Evaluation	
	Measures-1	
5	Trends in Machine Learning	
	Bootstrapping & Cross Validation, Class Evaluation Measures, ROC	
	curve, MDL, Ensemble Methods - Bagging, Committee Machines and	
	Stacking, Ensemble Methods – Boosting	
	Gradient Boosting, Random Forests, Multi-class Classification, Naive	
	Bayes, Bayesian Networks	
6	Clusteringand Reinforcement Learning	
	Partitional Clustering, Hierarchical Clustering, Birch Algorithm, CURE	
	Algorithm, Density-based Clustering, Gaussian Mixture Models,	
	Expectation Maximization, Learning Theory, Introduction to	
	Reinforcement Learning, RL Framework and application	
	Total Hours	

Ms. Vaishali Nirgude

Dr. Megharani Patil

Dr. Harshali Patil

Faculty Mentor

Specialization In-charge

HOD COMP

Syllabus for Artificial Intelligence Specialization – R-2020 A.Y. (2020-2021) T.E. Semester –VI

B.E. (Computer Engineering)								T.E. SEM: V1		
Course N	ame: Introc	luction to S	oft Computi	ng			Course C	ode: SP-CS-	AI-601	
]	Feaching Scl	heme (Prog	ram Specific	:)	Examinat	ion Sch	eme (Format	ive/ Summ	ative)	
Mo	des of Teacl	ning / Learn	ing / Weigh	tage	Modes of	Continu	10us Assessm	ent / Evalu	ation	
Hours Per Week					Theory (100)		Practical/ Oral (25)	Term Work (25)	Total	
Theory	Tutorial	Practica l	Contact Hours	Credits	Assignme nt	ESE	PR/OR	TW		
3	-	-	3	3	25	75	-	-	100	
Prerequis	site: Applied			amination	- Paper Dui	ration -	3 Hours		1	

<u>Course Objective:</u> Upon successful completion of the course, students will have an understanding of the basic areas of Soft Computing including Artificial Neural Networks, Fuzzy Logic and Genetic Algorithms. Provide the mathematical background for carrying out the optimization associated with neural network learning.

Detailed Syllabus:

Modul	Topics	NPTEL Link
e No.		
1.0	Introduction to Soft Computing	
	Difference between soft Computing and hard Computing, Explanation	
	Biological neural network ,Brain v/s Computer, Characteristics of Soft	https://nptel.ac.in/cou
	computing, Some applications of Soft computing techniques	rses/106/105/106105
		<u>173/</u>
2.0	Neural Network	
	Learning :- Supervise, Unsupervised, Reinforcement learning,	
	McCulloch – Pits Neural model, Realization of Gates using McCulloch	
	Pit Neural Model,	

s tcet	TCET	2 C
	DEPARTMENT OF COMPUTER ENGINEERING (COMP) (Accredited by NBA for 3 years, 3 rd Cycle Accreditation w.e.f. 1 st July 2019) Choice Based Credit Grading System with Holistic Student Development (CBCGS - H 2019)	
	Under TCET Autonomy Scheme - 2019	Estd. in 2001

	Learning Rules :- Hebbian Learning Rule, Perceptron Learning Rule,	
	Delta Learning Rule, Winner take All learning Rule, Adaline	
3.0	Multi-layer Network and Hybrid Computing	
	Linear Separable and non-separable, delta Learning rule for Multi	
	perceptron layer, , Kohonen Self organization Map , Learning Vector	
	Quantization, ART, ANFIS, CNFIS, Genetic Algorithm	
4.0	Fuzzy Set Theory	
	Fuzzy Sets: Basic definition and terminology, Basic concepts of fuzzy	
	sets, Fuzzy set operations, , Lambda-Cuts , Fuzzy relations: Cardinality	
	of fuzzy relations, operations on fuzzy relations, properties of fuzzy	
	relations, Fuzzy composition Fuzzification and Defuzzification: Features	
	of the membership Functions, Fuzzification, Defuzzification methods,	
	Fuzzy Rules: Fuzzy If-Then Rules, Fuzzy Reasoning Fuzzy Inference	
	System (FIS): Mamdani FIS, Sugeno FIS, Comparison between,	
	Mamdani and Sugeno FIS. Developing a Fuzzy System base on different	
	application like (Washing machine, Train Speed, Shower water, etc.)	
5.0	Advances in Neural Network	
5.0	SCPTA, MCPTA, Error Back Propagation Algorithm	
	SCFTA, MCFTA, EITOI Back Flopagation Algorithm	
6.0		
6.0	Principal Component Analysis	
	Dimensional Reducibility, Regularizing network and Generalized RBF,	
	Hand written Character Recongination, Inverse Kinematics Application	
·		

Mr. Vikas Singh

Dr. MegharaniPatil

Dr. HarshaliPatil

Faculty Mentor

Specialization In-charge

HOD

Syllabus for Artificial Intelligence Specialization – R-2020 A.Y. (2020-2021) B.E. Semester –VII

B.E. (Computer Engineering)						S.E. SE	M: VII		
Course Name: Applied Natural Language Processing						Course Code:SP-CS-AI-701		I-701	
Те	Teaching Scheme (Program Specific) Examination Scheme (Formative/ Summative)					tive)			
Mod	es of Teach	ing / Learn	ing / Weig	htage	Modes of (Contin	uous Assessment	/ Evalua	tion
Hours Per Week			Theory (100)		Practical/Oral (25)	Term Work (25)	Total		
Theory	Tutorial	Practical	Contact Hours	Credits	Assignment	ESE	PR/OR	TW	
3	-	-	3	3	25	75	-	-	100
	ESE: End Someston Examination Dance Duration 2 Hours								

ESE: End Semester Examination - Paper Duration - 3 Hours

Prerequisite: Data Structures, Probability

Course Objective: Course should be able to deliver fundamental knowledge of Natural Language

Processing and applying knowledge to implement real time problems in fields of natural languages.

Detailed Syllabus:

Module	Topics	NPTEL Link
No.		
1	Introduction to Natural Language Processing	
	Introduction, What do we do in NLP, Why NLP is hard, Empirical Laws,	
	Text processing basics.	https://swayam.
2	Language Modeling and evaluation	gov.in/nd1_noc
	Spelling correction, Edit distance, basic and advanced smoothing	20_cs87/previe
	Computational morphology, Regular, Finite State methods,	W
	N-gram language model, N-gram for spelling correction.	

	P DEPARTMENT OF COMPUTER ENGINEERING (COMP) (Accredited by NBA for 3 years 3 rd Cycle Accreditation w ef 1 st July 2019)	Etd. in 2001
2		

1		
3	Part of Speech	
	Introduction to Part-Of-Speech tagging (POS), Hidden Markov Model	
	(HMM), Maximum Entropy models (I, and II), Conditional Random	
	Field (CRF).	
4	Parsing and Grammar	
	Synatax analysis, Context Free grammars- CKY, PCFGs ,Inside Outside Probability.	
	Dependency based grammar and Parsing, Transition based parsing	
	formulation and learning, and MST based dependency parsing	
		_
5	Semantics and topics models	
	Distributional semantics introduction, Models, applications, structured	
	models, word embedding I and II, Word Sense Disambiguation, Novel	
	Word Sense Detection, LDA and variants, Applications of LDA	
6	Applications of NLP	
	Entity Linking, Information and relation Extraction, Distant Supervision,	
	Text summarization and Classification, Sentiment analysis	

Dr. AnandKhandare	Dr. MegharaniPatil	Dr. HarshaliPatil
Mrs. AshwiniPatil		
Faculty Mentor	Specialization In-charge	HOD

Syllabus for Artificial Intelligence Specialization – R-2020 A.Y. (2020-2021) B.E. Semester –VIII

B.E. (Computer Engineering)						B.E. SE	M: VIII		
Course Name: Deep Learning						Course Code:SP-CS-AI-801			
Teaching Scheme (Program Specific) Examination Sche						eme (Formative/	Summat	zive)	
Mod	es of Teach	ing / Learn	ing / Weigl	htage	Modes of	Contin	uous Assessment	/ Evalua	tion
Hours Per Week			Theory (100)		Practical/Oral (25)	Term Work (25)	Total		
Theory	Tutorial	Practical	Contact Hours	Credits	Assignment	ESE	PR/OR	TW	
3	-	-	3	3	25	75	-	-	100
ESE: End Semester Examination - Paper Duration - 3 Hours Prerequisite: Basic Mathematics,linear algebra, calculus and statistics, as well as programming and some								ne	

machine learning.

<u>Course Objective</u>: The Objective of this course is to introduce mathematical concepts required to apply in Machine Learning and Data science, an area that is in demand today and provide exposure to these advances and facilitate in depth discussions on chosen topics.

Detailed Syllabus:

Module	Topics	NPTEL Link
No.		
1	Introduction to Neural Network	
	History of Deep Learning, Deep Learning Success Stories, McCulloch Pitts	
	Neuron, Thresholding Logic, Perceptrons, Perceptron Learning Algorithm.	
	Multilayer Perceptrons (MLPs), Representation Power of MLPs, Sigmoid	
	Neurons, Gradient Descent.	

2	Deep Learning Fundamentals	
	FeedForward Neural Networks, Backpropagation.	
	Gradient Descent (GD), Momentum Based GD, Nesterov Accelerated GD,	
	Stochastic GD, AdaGrad, RMSProp	
3	PCA & Autoencoders	
	Principal Component Analysis and its interpretations, Singular Value	
	Decomposition , Autoencoders and relation to PCA, Regularization in	1
	autoencoders, Denoising autoencoders, Sparse autoencoders, Contractive	https://swayam.g
	autoencoders	ov.in/nd1_noc20
4	Regularization & Normalization	_cs62/preview
	Regularization: Bias Variance Tradeo-, L2 regularization, Early stopping,	
	Dataset augmentation, Parameter sharing and tying.	
	Greedy Layerwise Pre-training, Better activation functions, Better weight	
	initialization methods, Batch Normalization	
5	Convolutional Neural Networks	
	Convolutional Neural Networks, LeNet, AlexNet, ZF-Net, VGGNet,	
	GoogLeNet, ResNet.	
	Learning Vectorial Representations of Words	
6	Recurrent Neural Networks	
	Recurrent Neural Networks, Backpropagation through time. Encoder Decoder	1
	Models, Attention Mechanism, Attention over images.	
	, , , , , , , , , , , , , , , , , , ,	

Dr. Manish Rana

Dr. Megharani Patil

Dr. Harshali Patil

Faculty Mentor

Specialization In-charge

HOD COMP